Neuronal and Astroglial Localization of Glucocorticoid Receptor GRα in Adult Zebrafish Brain (Danio rerio)

成年斑马鱼脑内糖皮质激素受体 GRα 的神经元和星形胶质细胞定位

阅读:7
作者:Evangelos Natsaridis, Panagiotis Perdikaris, Stefanos Fokos, Catherine R Dermon

Abstract

Glucocorticoid receptor α (GRα), a ligand-regulated transcription factor, mainly activated by cortisol in humans and fish, mediates neural allostatic and homeostatic functions induced by different types of acute and chronic stress, and systemic inflammation. Zebrafish GRα is suggested to have multiple transcriptional effects essential for normal development and survival, similarly to mammals. While sequence alignments of human, monkey, rat, and mouse GRs have shown many GRα isoforms, we questioned the protein expression profile of GRα in the adult zebrafish (Danio rerio) brain using an alternative model for stress-related neuropsychiatric research, by means of Western blot, immunohistochemistry and double immunofluorescence. Our results identified four main GRα-like immunoreactive bands (95 kDa, 60 kDa, 45 kDa and 35 kDa), with the 95 kDa protein showing highest expression in forebrain compared to midbrain and hindbrain. GRα showed a wide distribution throughout the antero-posterior zebrafish brain axis, with the most prominent labeling within the telencephalon, preoptic, hypothalamus, midbrain, brain stem, central grey, locus coeruleus and cerebellum. Double immunofluorescence revealed that GRα is coexpressed in TH+, β2-AR+ and vGLUT+ neurons, suggesting the potential of GRα influences on adrenergic and glutamatergic transmission. Moreover, GRα was co-localized in midline astroglial cells (GFAP+) within the telencephalon, hypothalamus and hindbrain. Interestingly, GRα expression was evident in the brain regions involved in adaptive stress responses, social behavior, and sensory and motor integration, supporting the evolutionarily conserved features of glucocorticoid receptors in the zebrafish brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。