Alteration in Nuclear Factor-KappaB Pathway and Functionality of Estrogen via Receptors Promote Neuroinflammation in Frontal Cortex after 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Treatment

1-甲基-4-苯基-1,2,3,6-四氢吡啶治疗后核因子-κB 通路的改变和雌激素通过受体的功能促进额叶皮质的神经炎症

阅读:5
作者:Soham Mitra, Nabanita Ghosh, Priyobrata Sinha, Nilkanta Chakrabarti, Arindam Bhattacharyya

Abstract

The MPTP mediated neurodegeneration in substantia nigra has been well studied, but not the status of frontal cortex. The novelty of the present study is to explore the sex difference of frontal cortex during MPTP intoxication and to investigate the role of estrogen and its receptors in presence of glial cells in a time chase experiment; to identify which pathway of NF-kappaB exist to proceed the neuroinflammation; to investigate the estrogen binding with its nuclear or cytosolic receptors and whether any direct relation exists between estrogen receptor (ER) -beta and NF-kappaB molecules p65 and RelB. The progression of neurodegeneration occurred with the association of glial cells and functional (via its nuclear and cytosolic receptors) estrogen level. Both the canonical and/or non canonical pathways of NF-kappaB exist in frontal cortex of both the sexes after MPTP treatment. The homodimeric or heterodimeric form of ER-beta binds with NF-kappaB molecules p65 and RelB differently, but the canonical or non canonical pathways of NF-kappaB molecules could not be stopped or may be promoted. The changes in the molecular and cellular pattern in frontal cortex of both sexes during MPTP intoxication depends on the estrogen function via its nuclear or cytosolic estrogen receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。