Histological Comparison of New Biodegradable Magnesium-Based Implants for Maxillofacial Applications

用于颌面部的新型可生物降解镁基植入物的组织学比较

阅读:6
作者:Olga Charyeva #, Ulrich Thormann #, Katrin S Lips, Lydia Heimann, Ursula Sommer, Gabor Szalay, Volker Alt, Norbert Hort, Reinhard Schnettler, Michael Rauschmann, Sven Schmidt

Background

A variety of materials have been used for bone augmentation, distraction osteotomy, and in post-cancer patients following tumor removal. However, a temporary metal implant that would resorb after successful treatment is a new concept. Magnesium was suggested as a suitable material for these purposes because it is biocompatible, has better mechanical properties than titanium, and stimulates new bone formation. This study evaluates histological appearance of magnesium-based implants and the surrounding bone. Materials and

Conclusion

Pure Mg and W4 were shown to be the most promising materials in this study in respect to the bone response to the implant material. They could be used for screws and plates in bone augmentation procedures.

Methods

Three magnesium-based biomaterials were tested in a rabbit bone defect model: magnesium-hydroxyapatite (Mg-HA), W4 (96 % magnesium, 4 % yttrium), and pure magnesium (pure Mg). Animals were sacrificed after 6 and 12 weeks and the samples were analyzed histologically and histomorphometrically.

Results

Mg-HA had the highest mean amount of tartrate-resistant acid phosphatase (TRAP) positive cells at the implantation site of all groups. It had shown the fastest degradation rate already at 6 weeks but the least amount of new bone formation. New bone was seen forming in direct contact with pure Mg and W4. The mean gas volume was highest in W4 compared to pure Mg and Mg-HA but this difference was not statistically significant. W4 had the lowest mean number of TRAP-positive cells of all materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。