Bi-fluorescent Staphylococcus aureus infection enables single-cell analysis of intracellular killing in vivo

双荧光金黄色葡萄球菌感染可实现体内细胞内杀灭的单细胞分析

阅读:8
作者:Kristina D Hinman, Sonia S Laforce-Nesbitt, Joshua T Cohen, Miles Mundy, Joseph M Bliss, Alexander R Horswill, Craig T Lefort

Abstract

Techniques for studying the clearance of bacterial infections are critical for advances in understanding disease states, immune cell effector functions, and novel antimicrobial therapeutics. Intracellular killing of Staphylococcus aureus by neutrophils can be monitored using a S. aureus strain stably expressing GFP, a fluorophore that is quenched when exposed to the reactive oxygen species (ROS) present in the phagolysosome. Here, we expand upon this method by developing a bi-fluorescent S. aureus killing assay for use in vivo. Conjugating S. aureus with a stable secondary fluorescent marker enables the separation of infected cell samples into three populations: cells that have not engaged in phagocytosis, cells that have engulfed and killed S. aureus, and cells that have viable internalized S. aureus. We identified ATTO647N-NHS Ester as a favorable dye conjugate for generating bi-fluorescent S. aureus due to its stability over time and invariant signal within the neutrophil phagolysosome. To resolve the in vivo utility of ATTO647N/GFP bi-fluorescent S. aureus, we evaluated neutrophil function in a murine model of chronic granulomatous disease (CGD) known to have impaired clearance of S. aureus infection. Analysis of bronchoalveolar lavage (BAL) from animals subjected to pulmonary infection with bi-fluorescent S. aureus demonstrated differences in neutrophil antimicrobial function consistent with the established phenotype of CGD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。