Revealing underlying regulatory mechanisms of LINC00313 in Osimertinib-resistant LUAD cells by ceRNA network analysis

通过 ceRNA 网络分析揭示 LINC00313 在奥希替尼耐药 LUAD 细胞中的潜在调控机制

阅读:6
作者:Dandan Ding, Chenguang Xu, Jufeng Zhang, Ying Zhang, Lipeng Xue, Jingjing Song, Zhiming Luo, Xiaoyu Hong, Jian Wang, Weicheng Liang, Xingyang Xue

Background

Osimertinib, a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), is the preferred treatment for EGFR-mutated lung cancer. However, acquired resistance inevitably develops. While non-coding RNAs have been implicated in lung cancer through various functions, the molecular mechanisms responsible for osimertinib resistance remain incompletely elucidated.

Conclusions

Our results suggest that the LINC00313/miR-218-5p/COL1A1 axis potentially contributes to osimertinib resistance through the PI3K/Akt signaling pathway, providing novel insights into the molecular mechanisms underlying acquired osimertinib resistance in LUAD. Additionally, our study may aid in the identification of potential therapeutic targets for overcoming resistance to osimertinib.

Methods

RNA-sequencing technology was employed to determine differentially expressed lncRNAs (DE-lncRNAs) and mRNAs (DE-mRNAs) between H1975 and H1975OR cell lines. Starbase 2.0 was utilized to predict DE-lncRNA and DE-mRNA interactions, constructing ceRNA networks. Subsequently, functional and pathway enrichment analysis were performed on target DE-mRNAs to identify pathways associated with osimertinib resistance. Key target DE-mRNAs were then selected as potential risk signatures for lung adenocarcinoma (LUAD) prognostic modeling using multivariate Cox regression analyses. The Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and immunohistochemistry staining were used for result validation.

Results

Functional analysis revealed that the identified DE-mRNAs primarily enriched in EGFR-TKI resistance pathways, especially in the PI3K/Akt signaling pathway, where their concerted actions may lead to osimertinib resistance. Specifically, upregulation of LINC00313 enhanced COL1A1 expression by acting as a miR-218-5p sponge, triggering an upstream response that activates the PI3K/Akt pathway, potentially contributing to osimertinib resistance. Furthermore, the expressions of LINC00313 and COL1A1 were validated by qRT-PCR, and the activation of the PI3K/Akt pathway was confirmed by immunohistochemistry staining. Conclusions: Our results suggest that the LINC00313/miR-218-5p/COL1A1 axis potentially contributes to osimertinib resistance through the PI3K/Akt signaling pathway, providing novel insights into the molecular mechanisms underlying acquired osimertinib resistance in LUAD. Additionally, our study may aid in the identification of potential therapeutic targets for overcoming resistance to osimertinib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。