Glucocorticoid Priming of Nonviral Gene Delivery to hMSCs Increases Transfection by Reducing Induced Stresses

糖皮质激素启动非病毒基因向 hMSC 的传递,通过减少诱导应激来增加转染

阅读:7
作者:Andrew Hamann, Tyler Kozisek, Kelly Broad, Angela K Pannier

Abstract

Human mesenchymal stem cells (hMSCs) are under study for cell and gene therapeutics because of their immunomodulatory and regenerative properties. Safe and efficient gene delivery could increase hMSC clinical potential by enabling expression of transgenes for control over factor production, behavior, and differentiation. Viral delivery is efficient but suffers from safety issues, while nonviral methods are safe but highly inefficient, especially in hMSCs. We previously demonstrated that priming cells with glucocorticoids (Gcs) before delivery of DNA complexes significantly increases hMSC transfection, which correlates with a rescue of transfection-induced metabolic and protein synthesis decline, and apoptosis. In this work, we show that transgene expression enhancement is mediated by transcriptional activation of endogenous hMSC genes by the cytosolic glucocorticoid receptor (cGR) and that transfection enhancement can be potentiated with a GR transcription-activation synergist. We demonstrate that the Gc-activated cGR modulates endogenous hMSC gene expression to ameliorate transfection-induced endoplasmic reticulum (ER) and oxidative stresses, apoptosis, and inflammatory responses to prevent hMSC metabolic and protein synthesis decline, resulting in enhanced transgene expression after nonviral gene delivery to hMSCs. These results provide insights important for rational design of more efficient nonviral gene delivery and priming techniques that could be utilized for clinical hMSC applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。