Robust Surface-Engineered Tape-Cast and Extrusion Methods to Fabricate Electrically-Conductive Poly(vinylidene fluoride)/Carbon Nanotube Filaments for Corrosion-Resistant 3D Printing Applications

采用坚固的表面工程流延和挤出方法制造导电聚偏氟乙烯/碳纳米管长丝,用于耐腐蚀 3D 打印应用

阅读:5
作者:Asma Almazrouei, Rahmat Agung Susantyoko, Chieh-Han Wu, Ibrahim Mustafa, Ayoob Alhammadi, Saif Almheiri

Abstract

We developed a poly(vinylidene fluoride)/carbon nanotube (PVDF-MWCNT) filament as a feed for printing of electrically-conductive and corrosion-resistant functional material by fused filament fabrication (FFF). Using an environment-friendly procedure to fabricate PVDF-MWCNT filament, we achieved the best reported electrical conductivity of printable PVDF-MWCNT filament of 28.5 S cm-1 (90 wt% PVDF and 10 wt% CNT). The PVDF-MWCNT filaments are chemically stable in acid, base, and salt solution, with no significant changes in electrical conductivity and mass of the filaments. Our processing method is robust and allow a uniform mixture of PVDF and CNT with a wide range of CNT percentage up to 99.9%. We demonstrated the printing of PVDF-MWCNT filaments to create 3D shapes; printed using a low-cost commercial consumer-grade FFF 3D printer. We found many adjustments of printer parameters are needed to print filament with CNT content >10 wt%, but easier printing for CNT content ≤10 wt%. Since this was due to printer limitation, we believed that PVDF-MWCNT with higher CNT percentage (to a certain limit) and larger electrical conductivity could be printed with a custom-built printer (for example stronger motor). PVDF-MWCNT filament shows higher electrical conductivity (28.5 S cm-1) than compressed composite (8.8 S cm-1) of the same 10 wt% of CNT, due to more alignment of CNT in the longitudinal direction of the extruded filament. Printable PVDF-MWCNT-Fe2O3 (with a functional additive of Fe2O3) showed higher electrical conductivity in the longitudinal direction at the filament core (42 S cm-1) compared to that in the longitudinal direction at the filament shell (0.43 S cm-1) for sample with composition of 60 wt% PVDF, 20 wt% CNT, and 20 wt% Fe2O3, due to extrusion skin effect with segregation of electrically insulating Fe2O3 at the shell surface of PVDF-MWCNT-Fe2O3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。