Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy

通过浓度梯度策略合理设计机械强度高的富镍正极材料

阅读:5
作者:Tongchao Liu #, Lei Yu #, Jun Lu, Tao Zhou, Xiaojing Huang, Zhonghou Cai, Alvin Dai, Jihyeon Gim, Yang Ren, Xianghui Xiao, Martin V Holt, Yong S Chu, Ilke Arslan, Jianguo Wen, Khalil Amine

Abstract

Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。