Response of Bacterial and Fungal Soil Communities to Chinese Fir (Cunninghamia lanceolate) Long-Term Monoculture Plantations

细菌和真菌土壤群落对杉木(Cunninghamia lanceolate)长期单作人工林的响应

阅读:8
作者:Xian Liu, Yuzhe Wang, Yuhui Liu, Hui Chen, Yalin Hu

Abstract

Successive rotation and monoculture, as common silvicultural practices, are extensively applied worldwide, particularly in subtropical Chinese fir (Cunninghamia lanceolata) plantations in southern China. Although regeneration failure and productivity decline are frequently observed in continuous monoculture plantations, the potential mechanisms are still unclear. In this study, high-throughput sequencing was used to compare the diversity and composition of bacterial and fungal communities among different generations of Chinese fir plantation (first rotation, FRP; second rotation, SRP; third rotation, TRP) and natural forest (NF) in December and June. Our results showed significant declines in richness and diversity of bacterial and fungal communities in TRP compared with FRP and SRP, but no significant difference between FRP and SRP. The fungal phyla with high relative abundance were Basidiomycota (12.9-76.9%) and Ascomycota (14.3-52.8%), while the bacterial phyla with high relative abundance were Acidobacteria (39.1-57.7%) and Proteobacteria (21.2-39.5%) in all treatments at both sampling months. On average, the relative abundance of Basidiomycota in TRP increased by 53.4%, while that of Ascomycota decreased by 37.1% compared with FRP and SRP. Moreover, soil NH4 +-N, pH, and DOC appear to be the key factors in shaping the fungal communities, while soil NH4 +-N, DOCN, and AP primarily drive the changes in bacterial communities. Collectively, our findings highlighted the alteration of soil bacterial and fungal communities induced by changes in soil nutrient environment in different generations of continuously cultivated Chinese fir plantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。