Simultaneous quantification of Δ(9)-tetrahydrocannabinol, 11-nor-9-carboxy-tetrahydrocannabinol, cannabidiol and cannabinol in oral fluid by microflow-liquid chromatography-high resolution mass spectrometry

微流-液相色谱-高分辨质谱法同时定量口腔液中的 Δ(9)-四氢大麻酚、11-正-9-羧基四氢大麻酚、大麻二酚和大麻酚

阅读:11
作者:Marta Concheiro, Dayong Lee, Elena Lendoiro, Marilyn A Huestis

Abstract

Δ(9)-Tetrahydrocannabinol (THC) is the primary target in oral fluid (OF) for detecting cannabis intake. However, additional biomarkers are needed to solve interpretation issues, such as the possibility of passive inhalation by identifying 11-nor-9-carboxy-THC (THCCOOH), and determining recent cannabis smoking by identifying cannabidiol (CBD) and/or cannabinol (CBN). We developed and comprehensively validated a microflow liquid chromatography (LC)-high resolution mass spectrometry method for simultaneous quantification of THC, THCCOOH, CBD and CBN in OF collected with the Oral-Eze(®) and Quantisal™ devices. One milliliter OF-buffer solution (0.25mL OF and 0.5mL of Oral-Eze buffer, 1:3 dilution, or 0.75mL Quantisal buffer, 1:4 dilution) had proteins precipitated, and the supernatant subjected to CEREX™ Polycrom™ THC solid-phase extraction (SPE). Microflow LC reverse-phase separation was achieved with a gradient mobile phase of 10mM ammonium acetate pH 6 and acetonitrile over 10min. We employed a Q Exactive high resolution mass spectrometer, with compounds identified and quantified by targeted-MSMS experiments. The assay was linear 0.5-50ng/mL for THC, CBD and CBN, and 15-500pg/mL for THCCOOH. Intra- and inter-day and total imprecision were <10.8%CV and bias 86.5-104.9%. Extraction efficiency was 52.4-109.2%, process efficiency 12.2-88.9% and matrix effect ranged from -86 to -6.9%. All analytes were stable for 24h at 5°C on the autosampler. The method was applied to authentic OF specimens collected with Quantisal and Oral-Eze devices. This method provides a rapid simultaneous quantification of THCCOOH and THC, CBD, CBN, with good selectivity and sensitivity, providing the opportunity to improve interpretation of cannabinoid OF results by eliminating the possibility of passive inhalation and providing markers of recent cannabis smoking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。