Teucrium polium Extract Enhances the Anti-Angiogenesis Effect of Tranilast on Human Umbilical Vein Endothelial Cells

甘草提取物增强曲尼司特对人脐静脉内皮细胞的抗血管生成作用

阅读:7
作者:Fatemeh Sheikhbahaei, Mozafar Khazaei, Seyed Noureddin Nematollahi-Mahani

Conclusion

T. polium synergistically increased the antiangiogenic effect of tranilast on in vitro angiogenic model of HUVECs.

Methods

The HUVECs line was treated using different doses of tranilast and T. polium alone or their combination. The cell cytotoxicity was evaluated using MTT and LDH assays; apoptosis was examined using acridine orange/ethidium bromide staining, nitric oxide (NO) production was evaluated using Griess reaction and the expression of BAX and BCL-2 genes were detected using real-time RT-PCR. One-way analysis of variance (ANOVA) test was used to compare the data in different groups.

Purpose

Angiogenesis plays an important role in numerous pathophysiological events like cancer. As a result of this, tranilast as an anti-fibrotic drug induces the promising antitumor activities through the inhibition of angiogenesis. Further, Teucrium polium (TP) is a herbal medicine (family Lamaceae) with antitumor properties. This study was conducted to investigate the combination effects of tranilast and T. polium on human umbilical vein endothelial cells (HUVECs) viability and apoptotic genes expression.

Results

The survival rate of HUVECs was significantly reduced (p<0.05) in a dose dependent manner by tranilast and T. polium. However, T. polium and tranilast combination significantly (p<0.001) reduced cell viability and increased apoptotic cells as compared to each drug alone. Also, HUVECs treated with Tranilast / T. polium combination showed a reduced level of NO as regards to cells exposed only to Tranilast or T. polium (p<0.05). Furthermore, a significant increase in BAX and a decrease in BCL-2 mRNA expression were observed in combination group (p<0.001).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。