Laser microgrooving and resorbable blast texturing for enhanced surface function of titanium alloy for dental implant applications

激光微槽和可吸收喷砂纹理处理可增强钛合金的表面功能,用于牙科植入应用

阅读:12
作者:Sophie E Jones, Luke Nichols, Steven H Elder, Lauren B Priddy

Abstract

Long-term dental implant success is dependent on biocompatibility and osseointegration between the bone and the implant. Surface modifications such as laser-induced microgrooving which increase contact area can enhance osseointegration by establishing and directing a stable attachment between the implant surface and peri-implant bone. The objective of this study was to evaluate pre-osteoblast proliferation, morphology, and differentiation on titanium alloy (Ti64) surfaces-Laser-Lok© (LL), resorbable blast textured (RBT), and machined (M)-compared to tissue culture plastic (TCP) control. We hypothesized the LL surfaces would facilitate increased cellular alignment compared to all other groups, and LL and RBT surfaces would demonstrate enhanced proliferation and differentiation compared to M and TCP surfaces. Surface roughness was quantified using a surface profilometer, and water contact angle was measured to evaluate the hydrophilicity of the surfaces. Cellular function was assessed using quantitative viability and differentiation assays and image analyses, along with qualitative fluorescent (viability and cytoskeletal) imaging and scanning electron microscopy. No differences in surface roughness were observed between groups. Water contact angle indicated LL was the least hydrophilic surface, with RBT and M surfaces exhibiting greater hydrophilicity. Cell proliferation on day 2 was enhanced on both LL and RBT surfaces compared to M, and all three groups had higher cell numbers on day 2 compared to day 1. Cell orientation was driven by the geometry of the surface modification, as cells were more highly aligned on LL surfaces compared to TCP (on day 2) and RBT (on day 3). At day 21, cell proliferation was greater on LL, RBT, and TCP surfaces compared to M, though no differences in osteogenic differentiation were observed. Collectively, our results highlight the efficacy of laser microgrooved and resorbable blast textured surface modifications of Ti64 for enhancing cellular functions, which may facilitate improved osseointegration of dental implants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。