Demonstration of ameliorating effect of papaverine in sepsis-induced acute lung injury on rat model through radiology and histology

放射学和组织学证实罂粟碱对大鼠脓毒症急性肺损伤模型的改善作用

阅读:7
作者:Bahattin Özkul, İbrahim Halil Sever, Gürkan Yiğittürk, Çağrı Serdar Elgörmüş, Seray Gizem Gür, Oytun Erbaş

Background

Our target was to show the role of high mobility group box-1/receptor for (HMGB1/RAGE) interaction in feces intraperitoneal injection procedure (FIP)-induced acute lung injury (ALI) pathophysiology, to investigate the effect of papaverine on RAGE associated NF-κB pathway by determining the level of soluble RAGE (sRAGE) and HMGB1, and to support this hypothesis by evaluating inflammatory biochemical, oxidative stress markers, Hounsfield unit (HU) value in computed tomography (CT), and histo-pathological

Conclusion

We concluded that papaverine has ameliorating effects in rat model of ALI.

Methods

FIP was performed on 37 Wistar rats for creating a sepsis-induced ALI model. The animals were assigned into four groups as follows: Normal control (no treatment), placebo (FIP and saline), and receiving 20 mg/kg and 40 mg/kg per day papaverine. Twenty h after FIP, CT examination was performed for all animals, and HU value of the lung parenchyma was measured. The plasma levels of tumor necrosis factor (TNF)-α, HMGB1, sRAGE, C-reactive protein (CRP) and malondialdehyde (MDA), and lactic acid (LA) were determined and PaO2 and PaCO2 were measured from arterial blood sample. Lung damage was assessed by histopathological.

Results

TNF-, IL-6, CRP, HMGB1, MDA, LA levels, histopathologic scores, and HU values of CT were significantly increased and sRAGE levels were decreased in the saline-treated group against normal group (all P<0.05). Papaverine significantly reversed all results regardless of the dose (all P<0.05) and demonstrated inhibition of HMGB1/RAGE interaction through increasing sRAGE levels and suppresses the pro-inflammatory cytokines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。