Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners

Spastin 和 atlastin 是常染色体显性遗传性痉挛性截瘫中发生突变的两种蛋白质,它们是结合伙伴

阅读:6
作者:Christopher M Sanderson, James W Connell, Thomas L Edwards, Nicholas A Bright, Simon Duley, Amanda Thompson, J Paul Luzio, Evan Reid

Abstract

The pure hereditary spastic paraplegias (HSPs) are a group of conditions in which there is a progressive length-dependent degeneration of the distal ends of the corticospinal tract axons, resulting in spastic paralysis of the legs. Pure HSPs are most frequently inherited in an autosomal-dominant pattern and are commonly caused by mutations either in the SPG4 gene spastin or in the SPG3A gene atlastin. To identify binding partners for spastin, we carried out a yeast two-hybrid screen on a brain cDNA library, using spastin as bait. Remarkably, nearly all of the positive interacting prey clones coded for atlastin. We have verified the physiological relevance of this interaction using co-immunoprecipitation, glutathione S-transferase pull-down and intracellular co-localization experiments. We show that the spastin domain required for binding to atlastin lies within the N-terminal 80 residues of the protein, a region that is only present in the predominantly cytoplasmic, full-length spastin isoform. These data suggest that spastin and atlastin function in the same biochemical pathway and that it is the cytoplasmic function of spastin which is important for the pathogenesis of HSP. They also provide further evidence for a physiological and pathological role of spastin in membrane dynamics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。