Compensatory synaptotagmin-11 expression conceals parkinson's disease-like phenotypes in parkin knockout mice

补偿性突触结合蛋白-11 表达掩盖了 parkin 基因敲除小鼠的帕金森病样表型

阅读:5
作者:Nan Dong #, Zhenli Xie #, Anqi Wei #, Yuxin Yang, Yongning Deng, Xu Cheng, Bianbian Wang, Yang Chen, Yuhao Gu, Jingyu Yao, Yuhao Qin, Chaowen Zheng, Xi Zhang, Yuqing Zhang, Xinjiang Kang, Guoqing Chen, Qiumin Qu, Changhe Wang, Huadong Xu1

Abstract

Animal models are crucial for elucidating the pathological mechanisms underlying Parkinson's disease (PD). Unfortunately, most of transgenic mouse models fail to manifest pathological changes observed in PD patients, pending the advancement of PD research. However, the mechanism underlying this discrepancy remains elusive. Here, we provide compelling evidence that the compensatory expression of synaptotagmin-11 (Syt11) plays a key role in concealing PD-associated phenotypes in parkin knockout (KO) mouse models. Unlike the normal dopamine (DA) release and motor behaviors observed in parkin KO mice, parkin knockdown (KD) in the substantia nigra pars compacta (SNpc) in adult mice led to both the impaired DA release and the pronounced motor deficits. Interestingly, Syt11, a well-established parkin substrate involved in PD, was specifically upregulated in parkin KD mice and in parkin KO mice during the suckling stage, but not in adult parkin KO mice. Importantly, the overexpression of Syt11 alone is capable of inducing PD-like motor and non-motor impairments, as well as the impaired DA release and reuptake, which is essential for parkin-associated pathogenesis of PD. Therefore, this work not only elucidate a compensatory mechanism that accounts for the absence of overt PD phenotypes in parkin KO mice, but also contribute to the comprehensive understanding of the progression of PD, opening new avenues for the therapeutic treatment of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。