Machine learning prediction of dual and dose-response effects of flavone carbon and oxygen glycosides on acrylamide formation

机器学习预测黄酮碳和氧糖苷对丙烯酰胺形成的双重和剂量反应作用

阅读:6
作者:Laizhao Wang, Fan Zhang, Jun Wang, Qiao Wang, Xinyu Chen, Jun Cheng, Yu Zhang

Discussion

Taking ΔTEAC as a variable, a LS-SVR model was optimized as a predictive tool to estimate acrylamide content (R 2 inhibition = 0.87 and R 2 promotion = 0.91), which is pertinent for predicting the formation and elimination of acrylamide in the presence of exogenous antioxidants including flavonoids.

Methods

We used the least squares support vector regression (LS-SVR) as a machine learning approach to investigate the effects of flavone carbon and oxygen glycosides on acrylamide formation under a low moisture condition. Acrylamide was prepared through oven heating via a potato-based model with equimolar doses of asparagine and reducing sugars.

Results

Both inhibition and promotion effects were observed when the addition levels of flavonoids ranged 1-10,000 μmol/L. The formation of acrylamide could be effectively mitigated (37.6%-55.7%) when each kind of flavone carbon or oxygen glycoside (100 μmol/L) was added. The correlations between acrylamide content and trolox-equivalent antioxidant capacity (TEAC) within inhibitory range (R 2 = 0.85) had an advantage over that within promotion range (R 2 = 0.87) through multiple linear regression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。