The LKB1-like Kinase Elm1 Controls Septin Hourglass Assembly and Stability by Regulating Filament Pairing

LKB1 样激酶 Elm1 通过调节细丝配对来控制 Septin 沙漏组装和稳定性

阅读:4
作者:Joseph Marquardt, Lin-Lin Yao, Hiroki Okada, Tatyana Svitkina, Erfei Bi

Abstract

Septins form rod-shaped hetero-oligomeric complexes that assemble into filaments and other higher-order structures, such as rings or hourglasses, at the cell division site in fungal and animal cells [1-4] to carry out a wide range of functions, including cytokinesis and cell morphogenesis. However, the architecture of septin higher-order assemblies and their control mechanisms, including regulation by conserved kinases [5, 6], remain largely unknown. In the budding yeast Saccharomyces cerevisiae, the five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) localize to the bud neck and form an hourglass before cytokinesis that acts as a scaffold for proteins involved in multiple processes as well as a membrane-diffusible barrier between the mother and developing bud [7-9]. The hourglass is remodeled into a double ring that sandwiches the actomyosin ring at the onset of cytokinesis [10-13]. How septins are assembled into a highly ordered hourglass structure at the division site [13] is largely unexplored. Here we show that the LKB1-like kinase Elm1, which has been implicated in septin organization [14], cell morphogenesis [15], and mitotic exit [16, 17], specifically associates with the septin hourglass during the cell cycle and controls hourglass assembly and stability, especially for the daughter half, by regulating filament pairing and the functionality of its substrate, the septin-binding protein Bni5. This study illustrates how a protein kinase regulates septin architecture at the filament level and suggests that filament pairing is a highly regulated process during septin assembly and remodeling in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。