Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines

机器学习增强免疫肽组学应用于 COVID-19 疫苗的 T 细胞表位发现

阅读:4
作者:Kevin A Kovalchik #, David J Hamelin #, Peter Kubiniok #, Benoîte Bourdin, Fatima Mostefai, Raphaël Poujol, Bastien Paré, Shawn M Simpson, John Sidney, Éric Bonneil, Mathieu Courcelles, Sunil Kumar Saini, Mohammad Shahbazy, Saketh Kapoor, Vigneshwar Rajesh, Maya Weitzen, Jean-Christophe Grenier, Bay

Abstract

Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm-MHCvalidator-to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。