Unlocking the therapeutic potential of selective CDK7 and BRD4 inhibition against multiple myeloma cell growth

释放选择性 CDK7 和 BRD4 抑制对多发性骨髓瘤细胞生长的治疗潜力

阅读:22
作者:Yao Yao, Shuhui Deng, Jessica Fong Ng, Mei Yuan, Chandraditya Chakraborty, Vera JoyWeiler, Nikhil Munshi, Mariateresa Fulciniti

Abstract

Multiple myeloma (MM) is a plasma cell malignancy that is considered incurable despite the recent therapeutic advances. Effective targeted therapies are, therefore, needed. Our previous studies proved that inhibiting CDK7 impairs the cell cycle and metabolic programs by disrupting E2F1 and MYC transcriptional activities, making it an appealing therapeutic target for MM. Given that CDK7 and BRD4 operate in two distinct regulatory axes in MM, we hypothesized that targeting these two complementary pathways simultaneously would lead to a deeper and more durable response. Indeed, combination therapy had superior activity against MM cell growth and viability, and induced apoptosis to a greater extent than did single-agent therapy in both cell lines and patients' cells. This synergistic activity was also observed in Waldenström macroglobulinemia (WM) cells and with other inhibitors of E2F1 activity. Dual inhibition effectively impaired the MYC and E2F transcriptional programs and MM tumor growth and progression in xenograft animal models, providing evidence for the potential of combination therapy as a therapeutic strategy in MM and WM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。