Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro

亮氨酸引起肌管肥大并增强体外组织工程骨骼肌的最大收缩力

阅读:4
作者:Neil R W Martin, Mark C Turner, Robert Farrington, Darren J Player, Mark P Lewis

Abstract

The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。