Synthetic selenium nanoparticles as co-adjuvant improved immune responses against methicillin-resistant Staphylococcus aureus

合成硒纳米粒子作为辅助佐剂增强对耐甲氧西林金黄色葡萄球菌的免疫反应

阅读:4
作者:Alireza Ranjbariyan, Setareh Haghighat, Mohammad Hossein Yazdi, Sepideh Arbabi Bidgoli

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of hospital-acquired infections worldwide, which is resistant to many antibiotics, resulting in significant mortality in societies. Vaccination is a well-known approach to preventing disease. Autolysin, a surface-associated protein in S. aureus with multiple functions, is a suitable candidate for vaccine development. As a co-adjuvant, selenium nanoparticles (SeNPs) can increase the immune system, presumably resulting in increased vaccine efficacy. The present study evaluated the immunogenicity and defense of recombinant autolysin formulated in SeNPs and Alum adjuvants against MRSA. r-Autolysin was expressed and purified by the Ni-NTA affinity chromatography. SeNPs were synthetically obtained from sodium dioxide, followed by an assessment of shape and size using SEM and DLS. Balb/c mice were injected subcutaneously with 20 mg of r-autolysin formulated in Alum and SeNps adjuvants three times with the proper control group in 2 weeks intervals. Cytokine profile and isotyping ELISA were conducted to determine the type of induced immunity. Opsonophagocytosis tests assessed the functional activity of the vaccine, and the bacterial burden from the infected tissues was determined. Results showed that mice receiving SeNps and r-Autolysin had higher levels of total IgG and isotypes (IgG1 and IgG2a) and increased cytokine levels (IFN-γ, TNF-α, IL-12, and IL-4) as compared with those only receiving autolysin and PBS as a control. More importantly, mice immunized with SeNps and r-Autolysin exhibited a decrease in mortality and bacterial burden compared to the control group. We concluded that SeNps could stimulate immune responses and can be used as an adjuvant element in vaccine formulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。