EGFR-dependent mechanisms of resistance to osimertinib determined by ctDNA NGS analysis identify patients with better outcome

通过 ctDNA NGS 分析确定 EGFR 依赖的奥希替尼耐药机制,可识别出预后较好的患者

阅读:5
作者:Julie A Vendrell, Xavier Quantin, Audrey Aussel, Isabelle Solassol, Isabelle Serre, Jérôme Solassol

Background

Osimertinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that is highly selective for EGFR T790M subclones in patients with EGFR sensitizing non-small cell lung cancer (NSCLC). Unfortunately, all patients develop resistance through EGFR-dependent or EGFR-independent pathways. Recently, circulating tumoral DNA (ctDNA) analysis has highlighted the usefulness of plasma genotyping for exploring patient survival outcomes after disease progression under osimertinib.

Conclusions

Our study highlights the potential of ctDNA NGS to rapidly select the appropriate drug after osimertinib failure and to determine clinical outcomes of patients. We suggest that ctDNA NGS should be more intensively used in clinical practice to follow patients under third-generation TKIs.

Methods

Plasma samples from patients treated with osimertinib as a second-line therapy were collected and the presence of molecular alterations of acquired resistance was evaluated after relapse under osimertinib using ctDNA molecular profiling by next-generation sequencing (NGS) assays. The clinical implications of these genomic alterations for the efficiency of the third-generation TKI were further assessed.

Results

Our ctDNA molecular profiling of plasma samples highlighted large number of actionable genomic alterations. According to ctDNA NGS results, patients were classified as having developed an EGFR-dependent or EGFR-independent mechanism of resistance. Thus, patients who developed an EGFR-dependent mechanism of resistance responded longer to osimertinib (13.8 vs. 4.6 months; P<10-4) and have a better post-osimertinib clinical outcome than EGFR-independent resistant patients. Moreover, the development of an EGFR-dependent mechanism of osimertinib resistance was identified as the best fit to determine patients' clinical outcome compared with EGFR T790M status alone (P=0.003). Conclusions: Our study highlights the potential of ctDNA NGS to rapidly select the appropriate drug after osimertinib failure and to determine clinical outcomes of patients. We suggest that ctDNA NGS should be more intensively used in clinical practice to follow patients under third-generation TKIs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。