G protein-coupled estrogen receptor (GPER)/GPR30 forms a complex with the β1-adrenergic receptor, a membrane-associated guanylate kinase (MAGUK) scaffold protein, and protein kinase A anchoring protein (AKAP) 5 in MCF7 breast cancer cells

蛋白偶联雌激素受体 (GPER)/GPR30 与 MCF7 乳腺癌细胞中的 β1-肾上腺素受体、膜相关鸟苷酸激酶 (MAGUK) 支架蛋白和蛋白激酶 A 锚定蛋白 (AKAP) 5 形成复合物

阅读:20
作者:Julia Tutzauer, D Stephen Serafin, Tobias Schmidt, Björn Olde, Kathleen M Caron, L M Fredrik Leeb-Lundberg

Abstract

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the β1-adrenergic receptor (β1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits β1AR-mediated cAMP production. We hypothesized that this inhibition is a consequence of a plasma membrane complex of these receptors. Using co-immunoprecipitation, confocal immunofluorescence microscopy, and bioluminescence resonance energy transfer (BRET), we show that GPR30 and β1AR reside in close proximity in a plasma membrane complex when transiently expressed in HEK293. Deleting the GPR30 C-terminal PDZ motif (-SSAV) does not interfere with the receptor complex, indicating that the complex is not PDZ-dependent. MCF7 breast cancer cells express GPR30, β1AR, MAGUKs, and AKAP5 in the plasma membrane, and co-immunoprecipitation revealed that these proteins exist in close proximity also under native conditions. Furthermore, expression of GPR30 in MCF7 cells constitutively and PDZ-dependently inhibits β1AR-mediated cAMP production. AKAP5 also inhibits β1AR-mediated cAMP production, which is not additive with GPR30-promoted inhibition. These results argue that GPR30 and β1AR form a PDZ-independent complex in MCF7 cells through which GPR30 constitutively and PDZ-dependently inhibits β1AR signaling via receptor interaction with MAGUKs and AKAP5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。