Analysis of Protein-Protein Interactions Identifies NECTIN2 as a Target of N,N-Bis (5-Ethyl-2-hydroxybenzyl) Methylamine for Inhibition of Lung Cancer Metastasis

蛋白质-蛋白质相互作用分析确定 NECTIN2 是 N,N-双(5-乙基-2-羟基苄基)甲胺的靶点,可抑制肺癌转移

阅读:4
作者:Sunisa Thongsom, Nithikoon Aksorn, Korrakod Petsri, Sittiruk Roytrakul, Nicharat Sriratanasak, Worawat Wattanathana, Pithi Chanvorachote

Aim

Metastasis negatively affects the survival of lung cancer patients, however, relatively few compounds have potential in metastasis suppression. This study investigated the molecular targets of N,N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD) for metastatic inhibition. Materials and

Conclusion

EMD suppressed NECTIN2-induced activation of EMT signaling. These data support the development of EMD to prevent metastasis of lung cancer.

Methods

Proteins were analyzed by proteomic and bioinformatic analyses. Protein-protein interaction (PPI) networks were created with the Search Tool for the Retrieval of Interacting Genes. The Kyoto Encyclopedia of Genes and Genomes database and hub genes were used to determine dominant pathways. Immunofluorescence and western blot analyses validated the proteomic

Results

A total of 1,751 proteins were common to the control, EMD and N,N-bis(5-methoxy-2-hydroxybenzyl) methylamine (MeMD) groups; 1,980 different proteins were categorized using metastatic capacity category and analyzed for unique proteins affected by EMD. Fifteen proteins were associated with cell adhesion and six with cell migration. Nectin cell adhesion molecule 2 (NECTIN2) was expressed in the control and MeMD-treated groups but not the EMD-treated group, suggesting NECTIN2 as an EMD target. PPI network showed association of NECTIN2 with proteins regulating cancer metastasis. Kyoto Encyclopedia of Genes and Genomes pathways revealed that NECTIN2 is an upstream target of cytoskeletal regulation via SRC signaling. Western blot and immunofluorescence analyses confirmed that EMD suppressed NECTIN2, and its downstream targets, including p-SRC (Y146 and Y527) and the epithelial-to-mesenchymal transition markers tight junction protein 1, vimentin, β-catenin, snail family transcriptional repressor 1 (SNAI1), and SNAI2, while increasing E-cadherin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。