Physiological properties of indigenous lytic bacteriophages as monophage suspension and cocktail against poultry-adapted typhoidal Salmonella variants

本土溶菌噬菌体作为单噬菌体悬浮液和混合物对抗适应家禽的伤寒沙门氏菌变种的生理特性

阅读:8
作者:Rida Haroon Durrani, Ali Ahmad Sheikh, Masood Rabbani, Muti-Ur-Rehman Khan, Muhammad Ilyas Riaz, Muhammad Anas Naeem, Salman Ashraf Chattha, Aleena Kokab, Munazzah Maqbool, Muhammad Athar Abbas, Naila Siddique

Abstract

The emergence and spread of multidrug resistance among pathogens of the agro-food sector is increasing at an alarming rate, which has directed attention to the search for alternative to antibiotic therapy. The present work studied the physiological and population dynamics of lytic bacteriophages against avian-adapted Salmonella. Out of 28 positive samples, four bacteriophage isolates (SalØ-ABF37, SalØ-RCMPF12, SalØ-MCOH26, SalØ-DNLS42) were selected based on their ability to clearly lyse bacterial test strains. The isolates propagated were active against closely related D1 serotypes, i.e., S. Enteritidis and S. Typhimurium, with no heterologous activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 23235. Each of the monophage suspension and cocktail efficiently suppressed the bacterial count from exponential increase in comparison to the untreated bacterial control. The bacterial turbidity was recorded as 0.244 at λ600 during 400 min of co-incubation, in contrast to bacterial control showing λ600 = 0.669. The latent period was recorded to be 25, 35, 25 and 30 for SalØ-ABF37, SalØ-RCMPF12, SalØ-MCOH26 and SalØ-DNLS42, with 73.00, 97.00, 132 and 75.00 PFU cell-1, respectively. The highest lytic activity was seen at 37.00 ˚C - 42.00 ˚C, with phage particle count being fairly stable at pH 3.00 - 9.00. Each of the isolates possessed dsDNA by being resistant to RNase A. The current study concludes that lytic phages are promising alternative to combat multidrug resistant superbugs. The physiological characterization and bacterial growth inhibition are important parameters in standardization of phage therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。