Affinity of talin-1 for the β3-integrin cytosolic domain is modulated by its phospholipid bilayer environment

talin-1 对 β3-整合素胞质结构域的亲和力受其磷脂双层环境的调节

阅读:6
作者:David T Moore, Patrik Nygren, Hyunil Jo, Kathleen Boesze-Battaglia, Joel S Bennett, William F DeGrado

Abstract

Binding of the talin-1 FERM (4.1/ezrin/radixin/moesin) domain to the β3 cytosolic tail causes activation of the integrin αIIbβ3. The FERM domain also binds to acidic phospholipids. Although much is known about the interaction of talin-1 with integrins and lipids, the relative contribution of each interaction to integrin regulation and possible synergy between them remain to be clarified. Here, we examined the thermodynamic interplay between FERM domain binding to phospholipid bilayers and to its binding sites in the β3 tail. We found that although both the F0F1 and F2F3 subdomains of the talin-1 FERM domain bind acidic bilayers, the full-length FERM domain binds with an affinity similar to F2F3, indicating that F0F1 contributes little to the overall interaction. When free in solution, the β3 tail has weak affinity for the FERM domain. However, appending the tail to acidic phospholipids increased its affinity for the FERM domain by three orders of magnitude. Nonetheless, the affinity of the FERM for the appended tail was similar to its affinity for binding to bilayers alone. Thus, talin-1 binding to the β3 tail is a ternary interaction dominated by a favorable surface interaction with phospholipid bilayers and set by lipid composition. Nonetheless, interactions between the FERM domain, the β3 tail, and lipid bilayers are not optimized for a high-affinity synergistic interaction, even at the membrane surface. Instead, the interactions appear to be tuned in such a way that the equilibrium between inactive and active integrin conformations can be readily regulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。