Effect of low-intensity pulsed ultrasound on osteogenic human mesenchymal stem cells commitment in a new bone scaffold

低强度脉冲超声对新型骨支架中成骨人间充质干细胞定向的影响

阅读:7
作者:Valeria Carina, Viviana Costa, Lavinia Raimondi, Stefania Pagani, Maria Sartori, Elisa Figallo, Stefania Setti, Riccardo Alessandro, Milena Fini, Gianluca Giavaresi

Conclusions

This work shows that the combined use of new biomimetic osteo-inductive composite and LIPUS treatment could be a useful therapeutic approach in order to accelerate bone regeneration pathways.

Methods

hMSCs were seeded on MgHA/Coll hybrid composite scaffold in an osteo-inductive medium and exposed to LIPUS treatment for 20 min/day for different experimental times (7 days, 14 days). The investigation was focused on (i) the improvement of hMSCs to colonize the MgHA/Coll hybrid composite scaffold by LIPUS, in terms of cell viability and ultrastructural analysis; (ii) the activation of MAPK/ERK, osteogenic (ALPL,COL1A1,BGLAP,SPP1) and angiogenetic (VEGF, IL8) pathways, through gene expression and protein release analysis, after LIPUS stimuli.

Purpose

Bone tissue engineering is helpful in finding alternatives to overcome surgery limitations. Bone growth and repair are under the control of biochemical and mechanical signals; therefore, in recent years several approaches to improve bone regeneration have been evaluated. Osteo-inductive biomaterials, stem cells, specific growth factors and biophysical stimuli are among those. The aim of the present study was to evaluate if low-intensity pulsed ultrasound stimulation (LIPUS) treatment would improve the colonization of an MgHA/Coll hybrid composite scaffold by human mesenchymal stem cells (hMSCs) and their osteogenic differentiation. LIPUS stimulation was applied to hMSCs cultured on MgHA/Coll hybrid composite scaffold in osteogenic medium, mimicking the microenvironment of a bone fracture.

Results

LIPUS exposure improved MgHA/Coll hybrid composite scaffold colonization and induced in vitro osteogenic differentiation of hMSCs seeded on the scaffold. Conclusions: This work shows that the combined use of new biomimetic osteo-inductive composite and LIPUS treatment could be a useful therapeutic approach in order to accelerate bone regeneration pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。