circ-016910 sponges miR-574-5p to regulate cell physiology and milk synthesis via MAPK and PI3K/AKT-mTOR pathways in GMECs

circ-016910 吸附 miR-574-5p 通过 GMEC 中的 MAPK 和 PI3K/AKT-mTOR 通路调节细胞生理和乳汁合成

阅读:8
作者:Yuhan Liu, Jinxing Hou, Meng Zhang, Emeline Seleh-Zo, Jiangang Wang, Binyun Cao, Xiaopeng An

Abstract

Incremental proofs demonstrate that miRNAs, the essential regulators of gene expression, are implicated in various biological procedures, including mammary development and milk synthesis. Here, the role of miR-574-5p in milk synthesis, apoptosis, and proliferation of goat mammary epithelial cells (GMECs) are explored without precedent, and the molecular mechanisms for the impacts are elucidated. Small RNA libraries were constructed using GMECs transfected with miR-574-5p mimics and negative control followed by sequencing via Solexa technology. Overall, 332 genes were distinguishingly expressed entre two libraries, with 74 genes upregulated and 258 genes downregulated. This approach revealed mitogen-activated protein kinase kinase kinase 9 (MAP3K9), an upstream activator of MAPK signaling, as a differentially expressed unigene. miR-574-5p targeted seed sequences of the MAP3K9 3'-untranslated region and suppressed its messenger RNA (mRNA) and protein levels, correspondingly. GMECs with miR-574-5p overexpression and MAP3K9 inhibition showed increased cell apoptosis and decreased cell proliferation resulting from sustained suppression of MAPK pathways, while MAP3K9 elevation manifested the opposite results. miR-574-5p repressed the phosphorylation of members of protein kinase B (AKT)-mammalian target of rapamycin pathway via downregulating MAP3K9 and AKT3, resulting in reducing the secretion of β-casein and triglycerides in GMECs. Finally, according to the constructed circular RNA (circRNA) libraries and bioinformatics prediction approach, we selected circ-016910 and found it acted as a sponge for miR-574-5p and blocked its relevant behaviors to undertake biological effects in GMECs. The circRNA-miRNA-mRNA network facilitates further probes on the function of miR-574-5p in mammary development and milk synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。