Background
Ketamine rapidly elicits antidepressive effects in humans and mice in which serotonergic activity is involved. Although α4β2 nicotinic acetylcholine receptor (α4β2 nAChR) in the dorsal raphe nucleus plays a key role in the ketamine-induced prefrontal serotonin release, the source of cholinergic afferents, and its role is unclear.
Conclusions
These results suggest the ketamine-induced serotonin release in medial prefrontal cortex is mediated by cholinergic neurons projecting from pedunculopontine tegmental nucleus to dorsal raphe nucleus via α4β2 nAChRs.
Methods
Prefrontal serotonin levels after ketamine injection were measured by microdialysis in rats. Electrolytic lesion of pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus was made with constant direct current.
Results
Bilateral lesion of the pedunculopontine tegmental nucleus, but not laterodorsal tegmental nucleus, attenuated prefrontal serotonin release induced by systemic ketamine. Intra-pedunculopontine tegmental nucleus, but not intra-laterodorsal tegmental nucleus ketamine perfusion, increased prefrontal serotonin release. This increase was attenuated by intra-dorsal raphe nucleus injection of dihydro-β-erythroidine, an α4β2 nAChR antagonist, or NBQX, an AMPA receptor antagonist. Conclusions: These results suggest the ketamine-induced serotonin release in medial prefrontal cortex is mediated by cholinergic neurons projecting from pedunculopontine tegmental nucleus to dorsal raphe nucleus via α4β2 nAChRs.
