Footprint-C reveals transcription factor modes in local clusters and long-range chromatin interactions

足迹-C 揭示局部簇和长距离染色质相互作用中的转录因子模式

阅读:7
作者:Xiaokun Liu #, Hanhan Wei #, Qifan Zhang, Na Zhang, Qingqing Wu, Chenhuan Xu

Abstract

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding. When analyzed at one-dimensional level, the billions of chromatin contacts from Footprint-C enable genome-wide analysis at single footprint resolution, and reveal preferential modes of local TF co-occupancy. At pairwise contact level, Footprint-C exhibits higher efficiency in identifying chromatin structural features when compared with other Hi-C methods, segregates chromatin interactions emanating from adjacent TF footprints, and uncovers multiway interactions involving different TFs. Altogether, Footprint-C results suggest that rich regulatory modes of TF may underlie both local residence and distal chromatin interactions, in terms of TF identity, valency, and conformational configuration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。