Factor VIII/V C-domain swaps reveal discrete C-domain roles in factor VIII function and intracellular trafficking

因子 VIII/V C 结构域交换揭示了因子 VIII 功能和细胞内运输中 C 结构域的不同作用

阅读:5
作者:Eduard H T M Ebberink, Eveline A M Bouwens, Esther Bloem, Mariëtte Boon-Spijker, Maartje van den Biggelaar, Jan Voorberg, Alexander B Meijer, Koen Mertens

Abstract

Factor VIII C-domains are believed to have specific functions in cofactor activity and in interactions with von Willebrand factor. We have previously shown that factor VIII is co-targeted with von Willebrand factor to the Weibel-Palade bodies in blood outgrowth endothelial cells, even when factor VIII carries mutations in the light chain that are associated with defective von Willebrand factor binding. In this study, we addressed the contribution of individual factor VIII C-domains in intracellular targeting, von Willebrand factor binding and cofactor activity by factor VIII/V C-domain swapping. Blood outgrowth endothelial cells were transduced with lentivirus encoding factor V, factor VIII or YFP-tagged C-domain chimeras, and examined by confocal microscopy. The same chimeras were produced in HEK293-cells for in vitro characterization and chemical foot-printing by mass spectrometry. In contrast to factor VIII, factor V did not target to Weibel-Palade bodies. The chimeras showed reduced Weibel-Palade body targeting, suggesting that this requires the factor VIII C1-C2 region. The factor VIII/V-C1 chimera did not bind von Willebrand factor and had reduced affinity for activated factor IX, whereas the factor VIII/V-C2 chimera showed a minor reduction in von Willebrand factor binding and normal interaction with activated factor IX. This suggests that mainly the C1-domain carries factor VIII-specific features in assembly with von Willebrand factor and activated factor IX. Foot-printing analysis of the chimeras revealed increased exposure of lysine residues in the A1/C2- and C1/C2-domain interface, suggesting increased C2-domain mobility and disruption of the natural C-domain tandem pair orientation. Apparently, this affects intracellular trafficking, but not extracellular function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。