A Radiomic Approach to Access Tumor Immune Status by CD8+TRMs on Surgically Resected Non-Small-Cell Lung Cancer

通过放射组学方法评估手术切除的非小细胞肺癌患者 CD8+TRM 的肿瘤免疫状态

阅读:4
作者:Jie Min, Fei Dong, Pin Wu, Xiaopei Xu, Yimin Wu, Yanbin Tan, Fan Yang, Ying Chai

Conclusion

The radiomic models using CT image data showed a good predictive performance for accessing NSCLC immune status thus has great potential for personalized therapeutic decision making.

Methods

We retrospectively analyzed the NSCLC surgical specimens immune cell database and extracted CD8+ TRMs cell data, preoperative CT scan data were achieved. A total of 97 patients containing complete preoperative data were included, radiomic features were extracted from the preoperative CT image data. All the patients were divided into two groups, namely high-CD8+ TRMs infiltrated group and low-CD8+ TRMs infiltrated group, based on the proportion of CD8+ TRMs cells subset in the immune cell population. The most valuable radiomic features and semantic features were extracted and selected, and a neural network model was established to predict the level of CD8+ TRMs cell infiltration level to assess the tumor local immune status.

Purpose

Immunotherapy has made breakthroughs in the treatment of non-small-cell lung cancer (NSCLC); however, only a subset of patients achieved long-term survival, so it is of great importance to find a biomarker of lung cancer thus guide immunotherapy. Studies have shown that the infiltration level of tissue resident memory CD8+ T cells (CD8+ TRMs) is positively correlated with lung cancer prognosis and can be an ideal biomarker for assessing the tumor local immune status. We screened the radiomic features associated with CD8+ TRMs as targets in NSCLC surgical specimens by radiomic approaches, and established a radiomic predictive model to assess the local immune status, which may provide a scientific reference for lung cancer treatment strategies. Patients and

Results

The NSCLC tumor immune status predictive model was built to discriminate high- from low-CD8+ TRMs with an area under the curve (AUC) of 0.788 (95% CI) in the training set and 0.753 (95% CI) in the validation set.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。