LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria

LCL124 是一种神经酰胺的阳离子类似物,它通过在线粒体中积累选择性地诱导胰腺癌细胞死亡

阅读:8
作者:Thomas H Beckham, Ping Lu, Elizabeth E Jones, Tucker Marrison, Clayton S Lewis, Joseph C Cheng, Venkat K Ramshesh, Gyda Beeson, Craig C Beeson, Richard R Drake, Alicja Bielawska, Jacek Bielawski, Zdzislaw M Szulc, Besim Ogretmen, James S Norris, Xiang Liu

Abstract

Treatment of pancreatic cancer that cannot be surgically resected currently relies on minimally beneficial cytotoxic chemotherapy with gemcitabine. As the fourth leading cause of cancer-related death in the United States with dismal survival statistics, pancreatic cancer demands new and more effective treatment approaches. Resistance to gemcitabine is nearly universal and appears to involve defects in the intrinsic/mitochondrial apoptotic pathway. The bioactive sphingolipid ceramide is a critical mediator of apoptosis initiated by a number of therapeutic modalities. It is noteworthy that insufficient ceramide accumulation has been linked to gemcitabine resistance in multiple cancer types, including pancreatic cancer. Taking advantage of the fact that cancer cells frequently have more negatively charged mitochondria, we investigated a means to circumvent resistance to gemcitabine by targeting delivery of a cationic ceramide (l-t-C6-CCPS [LCL124: ((2S,3S,4E)-2-N-[6'-(1″-pyridinium)-hexanoyl-sphingosine bromide)]) to cancer cell mitochondria. LCL124 was effective in initiating apoptosis by causing mitochondrial depolarization in pancreatic cancer cells but demonstrated significantly less activity against nonmalignant pancreatic ductal epithelial cells. Furthermore, we demonstrate that the mitochondrial membrane potentials of the cancer cells were more negative than nonmalignant cells and that dissipation of this potential abrogated cell killing by LCL124, establishing that the effectiveness of this compound is potential-dependent. LCL124 selectively accumulated in and inhibited the growth of xenografts in vivo, confirming the tumor selectivity and therapeutic potential of cationic ceramides in pancreatic cancer. It is noteworthy that gemcitabine-resistant pancreatic cancer cells became more sensitive to subsequent treatment with LCL124, suggesting that this compound may be a uniquely suited to overcome gemcitabine resistance in pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。