DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of Smc6 mutants

DNA 损伤检查点和重组修复对 Smc6 突变体的复制应激耐受性有不同的影响

阅读:8
作者:Yu-Hung Chen, Barnabas Szakal, Federica Castellucci, Dana Branzei, Xiaolan Zhao

Abstract

DNA damage checkpoint and recombinational repair are both important for cell survival of replication stress. Because these two processes influence each other, isolation of their respective contributions is challenging. Research in budding yeast shows that removal of the DNA helicase Mph1 improves survival of cells with defective Smc5/6 complex under replication stress. mph1 is known to reduce the levels of recombination intermediates in smc6 mutants. Here, we show that mph1 also hyperactivates the Mec1 checkpoint. We dissect the effects of recombination regulation and checkpoint hyperactivation by altering the checkpoint circuitry to enhance checkpoint signaling without reducing recombination intermediate levels. We show that these approaches, similar to mph1, lead to better survival of smc6 cells upon transient replication stress, likely by ameliorating replication and chromosomal segregation defects. Unlike mph1, however, they do not suppress smc6 sensitivity to chronic stress. Conversely, reducing the checkpoint response does not impair survival of smc6 mph1 mutants under chronic stress. These results suggest a two-phase model in which smc6 mutant survival upon transient replication stress can be improved by enhancing Mec1 checkpoint signaling, whereas smc6 sensitivity to chronic stress can be overcome by reducing recombination intermediates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。