Nanostructure in Amphiphile-Based Deep Eutectic Solvents

两亲分子基深共晶溶剂中的纳米结构

阅读:6
作者:Iva Manasi, Ralf Schweins, Kun Ma, Karen J Edler

Abstract

Deep eutectic solvents (DESs) are an emerging class of modern, often "green" solvents with unique properties. Recently, a deep eutectic system based on amphiphilic surfactant N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (C12 & C14 sulfobetaine) and (1S)-(+)-10-camphor-sulfonic acid in the molar ratio 1:1.5 has been reported. Nanostructuring can be expected in this DES due to the nature of the components. In this work, we have investigated the native nanostructure in the DES comprising C12-C18 alkyl chain sulfobetaines with camphor sulfonic acid and how it interacts with polar and nonpolar species, water and dodecane, respectively, using small angle neutron scattering. By using contrast variation to highlight the relative position of the solvent components and additives, we can resolve the structure of the solvent and how it changes upon interaction with water and dodecane. Scattering from the neat DES shows structures corresponding to the self-assembly of sulfobetaines; the size of the structure increases as the alkyl chain length of the sulfobetaines increases. Water and dodecane interact, respectively, with the hydrophilic and hydrophobic moieties in the DES structure, primarily the sulfobetaine, thereby swelling and solvating the entire structure. The extent of the shift of the peak position, and the swelling, depend on concentration of the additive. The solution phase organization and the interaction of polar and nonpolar species as observed here, have the potential to affect the ordering of inorganic or polymeric materials grown in such solvents, paving new avenues for templating applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。