Morphological and Molecular Characterization of Trichoderma Isolates from Vegetable Crop Rhizospheres in Nepal

尼泊尔蔬菜作物根际木霉菌分离株的形态学和分子学特征

阅读:14
作者:Puja Jaiswal, Ram B Khadka, Aashaq Hussain Bhat, Suraj Baidya, Arvind Kumar Keshari

Background

Trichoderma spp. hold significant potential as biocontrol agents in agriculture due to their antagonistic properties against plant pathogens. The study aimed to characterize and identify Trichoderma isolates from rhizospheric regions of vegetable crops.

Conclusions

Overall, the study unveiled a rich diversity of Trichoderma species in different agricultural zones of Nepal. These findings shed light on the ecological distribution and diversity of Trichoderma spp., which could have significant implications for sustainable agriculture and biological control strategies.

Methods

In this study, Trichoderma isolates were collected from rhizospheric soil samples of vegetable crops from different ecological zones and were selected for comprehensive morphological and molecular characterization. The isolates were visually assessed for colony color, growth pattern, aerial mycelium presence, phialide and conidial morphology, and chlamydospore presence. Molecular analysis was employed based on ITS and tef-1α sequences. Diversity indices were also computed for different ecological zones.

Results

The morphological characteristics and phylogenetic trees for both regions provided a clear species resolution, with four main clades: Harzianum, Viride, Brevicompactum and Longibrachiatum with 12 species T. harzinaum, T. afroharzianum, T. lentiforme, T. inhamatum, T. camerunense, T. azevedoi, T. atroviride, T. asperellum, T. asperelloides, T. koningii, T. longibrachiatum and T. brevicompactum and nine species as a new country record. Diversity indices indicated that high mountain regions displayed the highest species diversity and evenness (H = 1.724 [0.28], J = 0.84, D = 0.28), followed by hilly regions (H = 1.563 [0.28], J = 0.72, D = 0.28). Plains, on the other hand, exhibited lower species diversity (H = 1.515, J = 0.66, D = 0.33). The calculated species abundance values showed that plains (E = 2.11), mid-hills (E = 1.95), and high mountains (E = 1.99) each had their unique diversity profiles. Notably, T. afroharzianum and T. asperellum were predominant. Conclusions: Overall, the study unveiled a rich diversity of Trichoderma species in different agricultural zones of Nepal. These findings shed light on the ecological distribution and diversity of Trichoderma spp., which could have significant implications for sustainable agriculture and biological control strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。