A Cell-Permeable Fluorescent Prochelator Responds to Hydrogen Peroxide and Metal Ions by Decreasing Fluorescence

可透过细胞的荧光前螯合剂通过降低荧光来响应过氧化氢和金属离子

阅读:11
作者:Lynne M Hyman, Katherine J Franz

Abstract

Described here is the development of two boronic ester-based fluorescent prochelators, FloB (2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-4(5)-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene-hydrazinocarbonyl]-benzoic acid) and FloB-SI (2-(6-hydroxy-3-oxo-3Hxanthen-9-yl)-4(5)-[2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyloxy)-benzylidene-hydrazinocarbonyl]-benzoic acid) that show a fluorescence response to a variety of transition metal ions only after reaction with H(2)O(2). Both prochelators' boronic ester masks are oxidized by H(2)O(2) to reveal a fluorescein-tagged metal chelator, FloS (4(5)-(2-hydroxy-benzylidenehydrazinocarbonyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid). Chelation of Fe(3+) or Cu(2+) elicits a 70% decrease in the emission signal of FloS, while Zn(2+), Ni(2+), and Co(2+) produce a more modest fluorescence decrease. The conversion of FloB to FloS proceeds in organic solvents, but hydrolytic decomposition of its hydrazone backbone is observed in aqueous solution. However, FloB-SI oxidizes cleanly with H(2)O(2) within 1 h in aqueous solutions to produce FloS. Fluorescence microscopy studies in HeLa cells with FloB-SI show that the sensor's fluorescence intensity remains unchanged until incubation with exogenous H(2)O(2), which results in a decreased fluorescent signal. Incubation with a competitive chelator restores the emission response, thus suggesting that FloB-SI can effectively report on a H(2)O(2)-induced increase in intracellular labilized metal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。