Enhancing islet transplantation using a biocompatible collagen-PDMS bioscaffold enriched with dexamethasone-microplates

使用富含地塞米松微板的生物相容性胶原蛋白-PDMS 生物支架增强胰岛移植

阅读:6
作者:Rosita Primavera, Mehdi Razavi, Bhavesh D Kevadiya, Jing Wang, Akshara Vykunta, Daniele Di Mascolo, Paolo Decuzzi, Avnesh S Thakor

Abstract

Islet transplantation is a promising approach to enable type 1 diabetic patients to attain glycemic control independent of insulin injections. However, up to 60% of islets are lost immediately following transplantation. To improve this outcome, islets can be transplanted within bioscaffolds, however, synthetic bioscaffolds induce an intense inflammatory reaction which can have detrimental effects on islet function and survival. In the present study, we first improved the biocompatibility of polydimethylsiloxane (PDMS) bioscaffolds by coating them with collagen. To reduce the inflammatory response to PDMS bioscaffolds, we then enriched the bioscaffolds with dexamethasone-loaded microplates (DEX-μScaffolds). These DEX-microplates have the ability to release DEX in a sustained manner over 7 weeks within a therapeutic range that does not affect the glucose responsiveness of the islets but which minimizes inflammation in the surrounding microenvironment. The bioscaffold showed excellent mechanical properties that enabled it to resist pore collapse thereby helping to facilitate islet seeding and its handling for implantation, and subsequent engraftment, within the epididymal fat pad (EFP). Following the transplantation of islets into the EFP of diabetic mice using DEX-μScaffolds there was a return in basal blood glucose to normal values by day 4, with normoglycemia maintained for 30 d. Furthermore, these animals demonstrated a normal dynamic response to glucose challenges with histological evidence showing reduced pro-inflammatory cytokines and fibrotic tissue surrounding DEX-μScaffolds at the transplantation site. In contrast, diabetic animals transplanted with either islets alone or islets in bioscaffolds without DEX microplates were not able to regain glycemic control during basal conditions with overall poor islet function. Taken together, our data show that coating PDMS bioscaffolds with collagen, and enriching them with DEX-microplates, significantly prolongs and enhances islet function and survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。