Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing

通过高通量转录组重测序对人类原代细胞等位基因表达不平衡进行全基因组分析

阅读:8
作者:Graham A Heap, Jennie H M Yang, Kate Downes, Barry C Healy, Karen A Hunt, Nicholas Bockett, Lude Franke, Patrick C Dubois, Charles A Mein, Richard J Dobson, Thomas J Albert, Matthew J Rodesch, David G Clayton, John A Todd, David A van Heel, Vincent Plagnol

Abstract

Many disease-associated variants identified by genome-wide association (GWA) studies are expected to regulate gene expression. Allele-specific expression (ASE) quantifies transcription from both haplotypes using individuals heterozygous at tested SNPs. We performed deep human transcriptome-wide resequencing (RNA-seq) for ASE analysis and expression quantitative trait locus discovery. We resequenced double poly(A)-selected RNA from primary CD4(+) T cells (n = 4 individuals, both activated and untreated conditions) and developed tools for paired-end RNA-seq alignment and ASE analysis. We generated an average of 20 million uniquely mapping 45 base reads per sample. We obtained sufficient read depth to test 1371 unique transcripts for ASE. Multiple biases inflate the false discovery rate which we estimate to be approximately 50% for random SNPs. However, after controlling for these biases and considering the subset of SNPs that pass HapMap QC, 4.6% of heterozygous SNP-sample pairs show evidence of imbalance (P < 0.001). We validated four findings by both bacterial cloning and Sanger sequencing assays. We also found convincing evidence for allelic imbalance at multiple reporter exonic SNPs in CD6 for two samples heterozygous at the multiple sclerosis-associated variant rs17824933, linking GWA findings with variation in gene expression. Finally, we show in CD4(+) T cells from a further individual that high-throughput sequencing of genomic DNA and RNA-seq following enrichment for targeted gene sequences by sequence capture methods offers an unbiased means to increase the read depth for transcripts of interest, and therefore a method to investigate the regulatory role of many disease-associated genetic variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。