The Human Genetic Differences in the Outcomes of mRNA Vaccination against COVID-19: A Prospective Cohort Study

人类遗传差异对 COVID-19 mRNA 疫苗接种结果的影响:一项前瞻性队列研究

阅读:7
作者:Ha-Eun Ryu, Jihyun Yoon, Ja-Eun Choi, Seok-Jae Heo, Kyung-Won Hong, Dong-Hyuk Jung

Background

This study aimed to explore how genetic variations in individuals impact neutralization activity post-mRNA vaccination, recognizing the critical role vaccination plays in curbing COVID-19 spread and the necessity of ensuring vaccine efficacy amidst genetic diversity.

Conclusion

We found that AA genotype holders (rs7795433 SNP of the HDAC9 gene) have a high probability of having a higher antibody count when vaccinated, and GG type holders have a high probability of the opposite. These findings show that the genetic characteristics of vaccinated people may affect antibody production after COVID vaccination.

Methods

In a 4-week clinical pilot study, 534 healthy subjects received their first COVID vaccine dose, followed by the second dose. Antibody levels were evaluated thrice. From this pool, 120 participants were selected and divided into high- and low-antibody groups based on their levels. Genomic DNA was isolated from peripheral blood mononuclear cells for pilot genome-wide association studies (GWAS) conducted on a single platform. Real-time PCR was used to confirm differences in gene expression identified via GWAS analysis.

Results

Three SNPs exceeded the level of p < 1.0 × 10-3. The rs7795433 SNP of the HDAC9 gene (7q21.1) showed the strongest association with COVID-19 vaccination under the additive model (OR = 5.63; p = 3 × 10-5). In the PCR experiments, the AA genotype group showed that the gene expression level of HDAC9 was likely to be decreased in the low-antibody-formation group at the time of vaccination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。