Injectable and Self-Curing Single-Component Hydrogel for Stem Cell Encapsulation and In Vivo Bone Regeneration

用于干细胞封装和体内骨再生的可注射自固化单组分水凝胶

阅读:3
作者:Seo Young Cheon, Ji Sun Park, Yeeun Lee, Chaehyun Lee, Hayoung Jeon, Donghyun Lee, Se Hee Kim, Seong Gi Lim, Heebeom Koo

Abstract

An ideal hydrogel for stem cell therapy would be injectable and efficiently promote stem cell proliferation and differentiation in body. Herein, an injectable, single-component hydrogel with hyaluronic acid (HA) modified with phenylboronic acid (PBA) and spermidine (SM) is introduced. The resulting HAps (HA-PBA-SM) hydrogel is based on the reversible crosslinking between the diol and the ionized PBA, which is stabilized by the SM. It has a shear-thinning property, enabling its injection through a syringe to form a stable hydrogel inside the body. In addition, HAps hydrogel undergoes a post-injection "self-curing," which stiffens the hydrogel over time. This property allows the HAps hydrogel to meet the physical requirements for stem cell therapy in rigid tissues, such as bone, while maintaining injectability. The hydrogel enabled favorable proliferation of human mesenchymal stem cells (hMSCs) and promoted their differentiation and mineralization. After the injection of hMSCs-containing HAps into a rat femoral defect model, efficient osteogenic differentiation of hMSCs and bone regeneration is observed. The study demonstrates that simple cationic modification of PBA-based hydrogel enabled efficient gelation with shear-thinning and self-curing properties, and it would be highly useful for stem cell therapy and in vivo bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。