IQUB mutation induces radial spoke 1 deficiency causing asthenozoospermia with normal sperm morphology in humans and mice

IQUB 突变导致放射状辐条 1 缺陷,导致人类和小鼠出现精子形态正常的弱精子症

阅读:3
作者:Tingwenyi Hu #, Xiangrong Tang #, Tiechao Ruan #, Shunhua Long, Guicen Liu, Jing Ma, Xueqi Li, Ruoxuan Zhang, Guoning Huang, Ying Shen, Tingting Lin0

Background

Asthenozoospermia (ASZ) accounts for about 20-40% of male infertility, and genetic factors, contributing to 30-40% of the causes of ASZ, still need further exploration. Radial spokes (RSs), a T-shaped macromolecular complex, connect the peripheral doublet microtubules (DMTs) to a central pair (CP), forming a CP-RS-DMT structure to regulate the beat frequency and amplitude of sperm flagella. To date, many components of RSs and their functions in human sperm flagella remain unclear.

Conclusions

We demonstrate that IQUB may serve as an adapter for sperm flagellar RS1 in both humans and mice and consolidated the causal relationship between IQUB genetic mutations and ANM, further enriching the genetic spectrum of male infertility.

Methods

We recruited a cohort of 323 infertile males with ASZ between August 2019 and June 2024. Genetic mutations were identified by whole-exome sequencing. Computer-aided sperm analysis, Papanicolaou staining, and electron microscopy were applied to evaluate the motility, morphology, and ultrastructure of spermatozoa, respectively. Protein mass spectrometry, western blotting, and bioinformatic analyses were performed to identify critical components of mammalian RS1 to model its structure and explore the pathological mechanism of IQUB deficiency. Intracytoplasmic sperm injection (ICSI) was applied for the patient and Iqub-/- mice.

Results

We identified a novel homozygous IQUB mutation [c.842del (p.L281Pfs*28)] in an ASZ male with normal sperm morphology (ANM), which resulted in the complete loss of IQUB in sperm flagella. Deficiency of RS1, but not RS2 or RS3, was observed in both IQUB842del patient and Iqub-/- mice, and resulted in the reduction of sperm kinetic parameters, indicating the critical role of IQUB in regulating mammalian RS1 assembly and sperm flagellar beat. More importantly, we identified twelve critical components of RS1 in humans and mice, among which RSPH3, RSPH6A, RSPH9 and DYDC1 constituting the head, DYDC1, NME5, DNAJB13 and PPIL6 assembling into the head-neck complex, AK8, ROPN1L, RSPH14, DYNLL1, and IQUB forming the stalk of RS1. Along with the RS1 defect, the IQUB deficiency caused significant down-regulation of the inner dynein arms of DNAH7 and DNAH12, highlighting their nearby location with RS1. Finally, ICSI can effectively resolve the male infertility caused by IQUB genetic defects. Conclusions: We demonstrate that IQUB may serve as an adapter for sperm flagellar RS1 in both humans and mice and consolidated the causal relationship between IQUB genetic mutations and ANM, further enriching the genetic spectrum of male infertility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。