High expression of AMAP1, an ARF6 effector, is associated with elevated levels of PD-L1 and fibrosis of pancreatic cancer

ARF6 效应分子 AMAP1 的高表达与 PD-L1 水平升高和胰腺癌纤维化相关

阅读:9
作者:Akio Tsutaho, Ari Hashimoto, Shigeru Hashimoto, Soichiro Hata, Shion Kachi, Satoshi Hirano, Hisataka Sabe

Background

Not merely the onset of immune evasion, but other factors, such as acidosis and fibrosis, are also major barriers in cancer therapeutics. Dense fibrosis is a hallmark of pancreatic ductal carcinoma (PDAC), in which hyperactivation of focal adhesion kinase (FAK) in tumor cells was shown to be crucial. Double mutations of KRAS/ TP53 are characteristic to PDAC. We previously showed that high protein expression of ARF6 and its downstream effector AMAP1, as well as processes involved in the ARF6 activation by cell surface tyrosine kinase receptors, are major targets of the KRAS/TP53 mutations to promote PDAC invasion, metastasis, and immune evasion. This notion was recaptured by KPC mouse model of human PDAC (LSL-Kras(G12D/+); LSL-Trp53(R172H/+)); Pdx-1-Cre). Mechanistically, the ARF6-AMAP1 pathway is primarily involved in cellular dynamics of PD-L1, β1-integrins, and E-cadherin; and hence modulates cell-adhesion properties when ARF6 is activated. Here, with an

Conclusions

Together with our previous data, our results collectively indicated that the ARF6-AMAP1 pathway, empowered by the KRAS/TP53 mutations, is closely associated with elevated PD-L1 expression and fibrosis of human PDACs, to be recaptured in the KPC mouse model. The ARF6 pathway may promote fibrosis independent of FAK. Video abstract.

Methods

Clinical specimens, as well as KPC cells/tumors and their shAMAP1 or shFAK derivatives were analyzed.

Results

Elevated levels of PD-L1 and fibrosis correlated with poor outcome of our patient cohort, to be consistent with previous reports; in which high AMAP1 expression statistically correlated with the elevated PD-L1 and fibrosis. To be consistent, silencing of AMAP1 (shAMAP1) in KPC cells resulted in reduced PD-L1 expression and fibrosis in their tumors. On the other hand, shAMAP1 only slightly affected FAK activation in KPC cells, and phosphorylated FAK did not correlate with enhanced fibrosis or with poor outcome of our patients. Conclusions: Together with our previous data, our results collectively indicated that the ARF6-AMAP1 pathway, empowered by the KRAS/TP53 mutations, is closely associated with elevated PD-L1 expression and fibrosis of human PDACs, to be recaptured in the KPC mouse model. The ARF6 pathway may promote fibrosis independent of FAK. Video abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。