BTBD9 attenuates manganese-induced oxidative stress and neurotoxicity by regulating insulin growth factor signaling pathway

BTBD9 通过调节胰岛素生长因子信号通路减轻锰诱导的氧化应激和神经毒性

阅读:15
作者:Pan Chen, Hong Cheng, Fuli Zheng, Shaojun Li, Julia Bornhorst, Bobo Yang, Kun He Lee, Tao Ke, Yunhui Li, Tanja Schwerdtle, Xiaobo Yang, Aaron B Bowman, Michael Aschner

Abstract

Manganese (Mn) is an essential mineral, but excess exposure can cause dopaminergic neurotoxicity. Restless legs syndrome (RLS) is a common neurological disorder, but the etiology and pathology remain largely unknown. The purpose of this study was to identify the role of Mn in the regulation of an RLS genetic risk factor BTBD9, characterize the function of BTBD9 in Mn-induced oxidative stress and dopaminergic neuronal dysfunction. We found that human subjects with high blood Mn levels were associated with decreased BTBD9 mRNA levels, when compared with subjects with low blood Mn levels. In A549 cells, Mn exposure decreased BTBD9 protein levels. In Caenorhabditis elegans, loss of hpo-9 (BTBD9 homolog) resulted in more susceptibility to Mn-induced oxidative stress and mitochondrial dysfunction, as well as decreased dopamine levels and alternations of dopaminergic neuronal morphology and behavior. Overexpression of hpo-9 in mutant animals restored these defects and the protection was eliminated by mutation of the forkhead box O (FOXO). In addition, expression of hpo-9 upregulated FOXO protein levels and decreased protein kinase B levels. These results suggest that elevated Mn exposure might be an environmental risk factor for RLS. Furthermore, BTBD9 functions to alleviate Mn-induced oxidative stress and neurotoxicity via regulation of insulin/insulin-like growth factor signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。