A Physiologically-Based Pharmacokinetic Model for the Prediction of Monoclonal Antibody Pharmacokinetics From In Vitro Data

基于生理的药代动力学模型,用于根据体外数据预测单克隆抗体的药代动力学

阅读:6
作者:Hannah M Jones, Zhiwei Zhang, Paul Jasper, Haobin Luo, Lindsay B Avery, Lindsay E King, Hendrik Neubert, Hugh A Barton, Alison M Betts, Robert Webster

Abstract

Monoclonal antibody (mAb) pharmacokinetics (PK) have largely been predicted via allometric scaling with little consideration for cross-species differences in neonatal Fc receptor (FcRn) affinity or clearance/distribution mechanisms. To address this, we developed a mAb physiologically-based PK model that describes the intracellular trafficking and FcRn recycling of mAbs in a human FcRn transgenic homozygous mouse and human. This model uses mAb-specific in vitro data together with species-specific FcRn tissue expression, tissue volume, and blood-flow physiology to predict mAb in vivo linear PK a priori. The model accurately predicts the terminal half-life of 90% of the mAbs investigated within a twofold error. The mechanistic nature of this model allows us to not only predict linear PK from in vitro data but also explore the PK and target binding of mAbs engineered to have pH-dependent binding to its target or FcRn and could aid in the selection of mAbs with optimal PK and pharmacodynamic properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。