mitoSplitter: A mitochondrial variants-based method for efficient demultiplexing of pooled single-cell RNA-seq

mitoSplitter:一种基于线粒体变异的高效分离合并单细胞 RNA 测序数据的方法

阅读:6
作者:Xinrui Lin #, Yingwen Chen #, Li Lin #, Kun Yin, Rui Cheng, Xin Lin, Xiaoyu Wang, Ye Guo, Zhaorun Wu, Yingkun Zhang, Jin Li, Chaoyong Yang, Jia Song

Abstract

Single-cell RNA-seq (scRNA-seq) analysis of multiple samples separately can be costly and lead to batch effects. Exogenous barcodes or genome-wide RNA mutations can be used to demultiplex pooled scRNA-seq data, but they are experimentally or computationally challenging and limited in scope. Mitochondrial genomes are small but diverse, providing concise genotype information. We developed "mitoSplitter," an algorithm that demultiplexes samples using mitochondrial RNA (mtRNA) variants, and demonstrated that mtRNA variants can be used to demultiplex large-scale scRNA-seq data. Using affordable computational resources, mitoSplitter can accurately analyze 10 samples and 60,000 cells in 6 h. To avoid the batch effects from separated experiments, we applied mitoSplitter to analyze the responses of five non-small cell lung cancer cell lines to BET (Bromodomain and extraterminal) chemical degradation in a multiplexed fashion. We found the synthetic lethality of TOP2A inhibition and BET chemical degradation in BET inhibitor-resistant cells. The result indicates that mitoSplitter can accelerate the application of scRNA-seq assays in biomedical research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。