Enhancing fatty acid and omega-3 production in Schizochytrium sp. using developed safe-harboring expression system

使用开发的安全港表达系统增强裂殖壶菌中的脂肪酸和 omega-3 产量

阅读:6
作者:Ae Jin Ryu #, Won-Sub Shin #, Sunghoon Jang, Yejin Lin, Yejee Park, Yujung Choi, Ji Young Kim, Nam Kyu Kang

Background

Schizochytrium, a group of eukaryotic marine protists, is an oleaginous strain, making it a highly promising candidate for the production of lipid-derived products such as biofuels and omega-3 fatty acids. However, the insufficient advancement of genetic engineering tools has hindered further advancements. Therefore, the development and application of genetic engineering tools for lipid enhancement are crucial for industrial production.

Conclusion

This study successfully established a robust homologous recombination system in Schizochytrium sp. by identifying a reliable safe harbor site for gene integration. The targeted expression of the KR gene at this site not only enhanced DHA production but also maintained growth and glucose consumption rates, validating the efficacy of the safe-harbor approach. This advancement in synthetic biology and metabolic engineering paves the way for more efficient biotechnological applications in Schizochytrium sp.

Results

Transgene expression in Schizochytrium often encounters challenges such as instability due to positional effects. To overcome this, we developed a safe-harbor transgene expression system. Initially, the sfGFP gene was integrated randomly, and high-expressing transformants were identified using fluorescence-activated cell sorting. Notably, HRsite 2, located approximately 3.2 kb upstream of cytochrome c, demonstrated enhanced sfGFP expression and homologous recombination efficiency. We then introduced the 3-ketoacyl-ACP reductase (KR) gene at HRsite 2, resulting in improved lipid and docosahexaenoic acid (DHA) production. Transformants with KR at HRsite 2 exhibited stable growth, increased glucose utilization, and a higher lipid content compared to those with randomly integrated transgenes. Notably, these transformants showed a 25% increase in DHA content compared to the wild-type strain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。