INHIBITING SIRT2 ATTENUATES SEPSIS-INDUCED ACUTE KIDNEY INJURY VIA FOXO1 ACETYLATION-MEDIATED AUTOPHAGY ACTIVATION

抑制 SIRT2 可通过 FOXO1 乙酰化介导的自噬激活减轻脓毒症引起的急性肾损伤

阅读:9
作者:Binmei Yu, Lijun Weng, Jiaxin Li, Tingjie Wang, Weihuang Qiu, Yuying Li, Menglu Shi, Bo Lin, Xianzhong Lin, Zhongqing Chen, Zhenhua Zeng, Youguang Gao

Abstract

Sepsis-associated acute kidney injury (SAKI), a common complication in intensive care units (ICUs), is linked to high morbidity and mortality. Sirtuin 2 (SIRT2), an NAD + -dependent deacetylase, has been shown to have distinct effects on autophagy regulation compared to other sirtuins, but its role in SAKI remains unclear. This study explored the potential of SIRT2 as a therapeutic target for SAKI. We found that inhibition of SIRT2 with the antagonist AGK2 improved the survival of septic mice. SIRT2 inhibition reduced kidney injury, as indicated by lower levels of KIM-1, NGAL, serum creatinine, blood urea nitrogen, and proinflammatory cytokines following cecal ligation and puncture. Pretreatment with AGK2 in septic mice increased autophagosome and autolysosome formation in renal tubular epithelial cells and upregulated LC3 II expression in the renal cortex. Consistent with in vivo findings, SIRT2 gene silencing promoted autophagy in LPS-treated HK-2 cells, whereas SIRT2 overexpression inhibited it. Mechanistically, SIRT2 inhibition increased FOXO1 acetylation, inducing its nuclear-to-cytoplasmic translocation, which promoted kidney autophagy and alleviated SAKI. Our study suggests SIRT2 as a potential target for SAKI therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。