Aims
The aim of our study was to describe the time course of endocannabinoids during different anaesthesia protocols in more detail, and to challenge the hypothesis that propofol acts as a FAAH inhibitor.
Conclusions
Our findings challenge the idea that propofol anaesthesia and also propofol addiction are directly mediated by FAAH inhibition, but we cannot exclude other indirect actions on cannabinoid receptors.
Methods
Endocannabinoids were measured during the first hour of anaesthesia in 14 women and 14 men undergoing general anaesthesia with propofol and in 14 women and 14 men receiving thiopental/sevoflurane. We also incubated whole human blood samples ex vivo with propofol and the known FAAH inhibitor oloxa and determined FAAH enzyme kinetics.
Results
Plasma anandamide decreased similarly with propofol and thiopental/sevoflurane anaesthesia, and reached a nadir after 10 min. Areas under the curve for anandamide (mean and 95% CI) were 53.3 (47.4, 59.2) nmol l(-1) 60 min with propofol and 48.5 (43.1, 53.8) nmol l(-1) 60 min with thiopental/sevoflurane (P= NS). Anandamide and propofol plasma concentrations were not correlated at any time point. Ex vivo FAAH activity was not inhibited by propofol. Enzyme kinetics (mean ± SD) of recombinant human FAAH were K(m) = 16.9 ± 8.8 µmol l(-1) and V(max) = 44.6 ± 15.8 nmol mg(-1) min(-1) FAAH without, and K(m) = 16.6 ± 4.0 µmol l(-1) and V(max) = 44.0 ± 7.6 nmol mg( 1 ) min(-1) FAAH with 50 µmol l(-1) propofol (P= NS for both). Conclusions: Our findings challenge the idea that propofol anaesthesia and also propofol addiction are directly mediated by FAAH inhibition, but we cannot exclude other indirect actions on cannabinoid receptors.
