Single-Ion Conducting Polymer Nanoparticles as Functional Fillers for Solid Electrolytes in Lithium Metal Batteries

单离子导电聚合物纳米粒子作为锂金属电池固体电解质的功能填料

阅读:5
作者:Luca Porcarelli, Preston Sutton, Vera Bocharova, Robert H Aguirresarobe, Haijin Zhu, Nicolas Goujon, Jose R Leiza, Alexei Sokolov, Maria Forsyth, David Mecerreyes

Abstract

Composite solid electrolytes including inorganic nanoparticles or nanofibers which improve the performance of polymer electrolytes due to their superior mechanical, ionic conductivity, or lithium transference number are actively being researched for applications in lithium metal batteries. However, inorganic nanoparticles present limitations such as tedious surface functionalization and agglomeration issues and poor homogeneity at high concentrations in polymer matrixes. In this work, we report on polymer nanoparticles with a lithium sulfonamide surface functionality (LiPNP) for application as electrolytes in lithium metal batteries. The particles are prepared by semibatch emulsion polymerization, an easily up-scalable technique. LiPNPs are used to prepare two different families of particle-reinforced solid electrolytes. When mixed with poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide (LiTFSI/PEO), the particles invoke a significant stiffening effect (E' > 106 Pa vs 105 Pa at 80 °C) while the membranes retain high ionic conductivity (σ = 6.6 × 10-4 S cm-1). Preliminary testing in LiFePO4 lithium metal cells showed promising performance of the PEO nanocomposite electrolytes. By mixing the particles with propylene carbonate without any additional salt, we obtain true single-ion conducting gel electrolytes, as the lithium sulfonamide surface functionalities are the only sources of lithium ions in the system. The gel electrolytes are mechanically robust (up to G' = 106 Pa) and show ionic conductivity up to 10-4 S cm-1. Finally, the PC nanocomposite electrolytes were tested in symmetrical lithium cells. Our findings suggest that all-polymer nanoparticles could represent a new building block material for solid-state lithium metal battery applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。